If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+10t-4.9t^2=0
a = -4.9; b = 10; c = +2;
Δ = b2-4ac
Δ = 102-4·(-4.9)·2
Δ = 139.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-\sqrt{139.2}}{2*-4.9}=\frac{-10-\sqrt{139.2}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+\sqrt{139.2}}{2*-4.9}=\frac{-10+\sqrt{139.2}}{-9.8} $
| p−47/5=6 | | (10x-4)+104+76+104=360 | | 2.8(9.5+8.5+n)=75.88 | | 2+10t-4.9t^2=1 | | m(m–6)=m^2-6 | | (17x+8)+66+74+110=360 | | 2−(-8k)=-62 | | -3x-30=3x | | 2−-8k=-62 | | x^2+x=7x+16x2+x=7x+16 | | 7(v+26)=-77 | | 12=12v-9v | | 2(4w-1)=-13 | | -4x+3=-2x+13 | | 16+8a+4a^2=0 | | 15=2a | | 3=5−2b | | 11+1-4x+5x=x-2-1 | | 2-3=x+10 | | m(m–6)=5 | | (18x-7)=(2+15x) | | 120=50•t | | 3-2=x+10 | | 34-2-r=12 | | (8y-7)=(23-2y) | | (8y-7)=(23y-2y) | | t+1.2=-3.4 | | 21y=252 | | 21y=257 | | 1,000,000=1(2)^x | | 3x2+11x+9=0 | | 4g =3.2g= |